If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2+4=16
We move all terms to the left:
1/3x^2+4-(16)=0
Domain of the equation: 3x^2!=0We add all the numbers together, and all the variables
x^2!=0/3
x^2!=√0
x!=0
x∈R
1/3x^2-12=0
We multiply all the terms by the denominator
-12*3x^2+1=0
Wy multiply elements
-36x^2+1=0
a = -36; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-36)·1
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-36}=\frac{-12}{-72} =1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-36}=\frac{12}{-72} =-1/6 $
| 30=-16t^2+128t | | -9.11-8.2y=8.09-6.2y | | 6x^2+4=-36 | | g-141=148 | | 361x+34=1 | | 2(3x+1)=4(x–1) | | 6d+108+7d+112=90 | | 7.65=2.25+0.20(m=1) | | 19m+3=28.6 | | 3x=18;×= | | 1,800,000=x*(1*06)^35 | | 3m+19=28.60 | | 3m+19=28.6 | | 1,800,000=x*1.06^35 | | 1,800,000=x*(1.06)^35 | | 9.95+3.7n=-9.76+5.3n-4.3n | | 45x.50x=2x | | 11a+24=42 | | 1.3(8–b)+3.7b=−5.2 | | 2f+10=-8-f | | -9v-8=-4v-6v+1 | | -5+2(5+4a)=-43 | | (5x+3)(4x+8)=146 | | 2m+3.10=21.10 | | -6.7p+7.89=-7.7p+7.89 | | 400+t=620 | | 7u-10=9u+10 | | 24x+9=96 | | 5.86-4.9n=-3.92-6.3n+1.94 | | 27/2.5=18/p | | 6+y+3-5y=15 | | x^2-4=2(x^-2) |